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We present Turnstile+, a high-level, macros-based metaDSL for building dependently typed languages. With

it, programmers may rapidly prototype and iterate on the design of new dependently typed features and

extensions. Or they may create entirely new DSLs whose dependent type łpowerž is tailored to a specific
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1 THE TROUBLE WITH IMPLEMENTING DEPENDENT TYPES

Dependent types are breaking into the mainstream. For example, Scala supports path-dependent
types [Amin et al. 2014; Cremet et al. 2006], Haskell has embraced type-level computation [Weirich
et al. 2017], and Rust has considered Π types [2017]. Further, interactive languages like F* are
increasingly used to verify critical software such as Firefox’s TLS [Zinzindohoué et al. 2017].
Unfortunately, widespread use remains on hold as language designers continue exploring the

design space, trying to balance the power of dependent types with their steep learning curve. Worse,
because dependent types blur the distinction between types and runtime valuesÐcomplicating a
language’s implementation as wellÐevaluating a feature is more difficult and iterating on its design
is extremely time-consuming. Indeed, determining an ideal łpower-to-weightž ratio has slowed
adoption in Haskell [Yorgey et al. 2012], and has led to repeated rewrites, and the abandonment
of, Rust dependent type RFCs [2017]. This history suggests that language designers would benefit
from an easier way to build and iterate on the design of dependently typed features and languages.
We present Turnstile+, a metalanguage for implementing typedÐparticularly dependently

typedÐlanguages. Turnstile+ supports terse mathematical notation, modular language feature
implementation, and implicit handling of complex type system implementation patterns, including
those for dependent types. These capabilities allow language designers to iterate quickly on the
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design of a new dependently typed feature by rapidly building modular and extensible prototype
implementations. Or theymay drastically reduce the size of their design space by tailoring the power
of a type system to a specific DSL. Turnstile+’s ability to quickly create languages comes from its
use of LISP and Scheme-style macros, which enable reusing a host language’s infrastructure when
building new languages. Turnstile+ is implemented in Racket [Felleisen et al. 2015], this paper’s
platform of choice, because it exposes more of the compiler for reuse than its predecessors [Flatt
2002, 2016; Flatt et al. 2012], and has a language-oriented focus [Felleisen et al. 2018].
Turnstile+ can also help advance the state-of-the-art for full-spectrum dependently typed

languages like Coq or Agda, which often have powerful core type theories that are difficult to
program directly. Thus, users rely on a variety of features layered on top of the core, from extensions
for unification [McBride 2000], termination [Giménez 1995], or automation [Blanchette et al. 2016],
to companion DSLs like tactic systems [Delahaye 2000; Gonthier and Mahboubi 2010; Ziliani et al.
2013] or pattern matchers [Coquand 1992; Norell 2007]. Unfortunately, such an ad-hoc system of
interacting components can be difficult to modify, especially when third-party tools are involved.
We claim our macro-based, language-oriented approach creates more extensible, linguistically-
integrated components, and can thus help researchers more easily explore alternate designs.

The main technical contribution of our paper is the design and implementation of the Turnstile+
metalanguage, which is a complete rewrite of Chang et al. [2017]’s Turnstile. Turnstile showed
that typed languages, instead of being built from scratch, could be implemented by adding some type
checking code to macro definitions, and then reusing the infrastructure of the macro systemÐe.g.,
its implementation of binding, pattern matching, environments, and transformationsÐfor the rest
of the type checker. Even better, organized in this way, a type checker implementation closely
corresponds to its (algorithmic) specification, and language creatorsmay exploit this correspondence
by coding at the level of mathematical type rules. Turnstile+ represents a major research leap over
its predecessor. Specifically, we solve the major challenges necessary to implement dependent types
and their accompanying DSLs and extensions (which Turnstile could not support), while retaining
the original abilities of Turnstile. For example, one considerable obstacle was the separation
between the macro expansion phase and a program’s runtime phase. Since dependently typed
languages may evaluate expressions while type checking, checking dependent types with macros
requires new macrology design patterns and abstractions for interleaving expansion, type checking,
and evaluation. The following summarizes our key innovations.

• Turnstile+ demands a radically different API for implementing a language’s types. It must
be straightforward yet expressive enough to represent a range of constructs from base types,
to binding forms like Π types, to datatype definition forms for indexed inductive type families.

• Turnstile+ includes an API for defining type-level computation, which we dub normalization
by macro expansion. A programmer writes a reduction rule using syntax resembling familiar
on-paper notation, and Turnstile+ generates a macro definition that performs the reduction
during macro expansion. This allows easily implementing modular type-level evaluation.

• Turnstile+’s new type API adds a generic type operation interface, enabling modular
implementation of features such as error messages, pattern matching, and resugaring. This is
particularly important for implementing tools like tactic systems that inspect intermediate
type checking steps and construct partial terms.

• Turnstile+’s core type checking infrastructure requires an overhaul, specifically with first-
class type environments, in order to accommodate features like dependent binding structures
of the shape [x : τ ] . . ., i.e., telescopes [de Bruijn 1991; McBride 2000].

• Relatedly, Turnstile+’s inference-rule syntax is extended so that operations over telescopes,
or premises with references to telescopes, operate as łfoldžs instead of as łmapžs.
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surface lang stx

type check

transform

target lang stx

(define-m stx-transform-name

[<input: surface lang stx pattern>

<side-condition checks>

<output: construct target lang stx>])

surface lang stx

macro expand:

type check⇌ transform

target lang stx

Fig. 1. (l) A typical type system implementation, (c) a macro definition, and (r) a macro-based type checker.

To evaluate our claim that Turnstile+ allows quickly and modularly iterating on dependently
typed languages, and tailoring the power of a type system, we present a series of examples that
range from łlightweightž to łfull-spectrumž, though we spend more time on the łfullž end because
it is more involved. Specifically we show how to create: a video-editing DSL with a Dependent
ML-like type system; a full-spectrum dependently typed calculus à la Martin Löf; as well as one
with inductive datatypes à la Dybjer [1994]. To show that our approach scales to a realistic language,
we then turn our core inductive calculus into Cur, a prototype proof assistant with: recursive
definitions and termination checking; unification and implicit arguments; and dependent pattern
matching. To show that our system supports common extensions we create: a tactic system; a
metaDSL to implement the tactic system; a system similar to Ott [Sewell et al. 2007] for writing
language definitions; a library for proving theorems via an SMT solver; and a library that adds
sized types [Abel 2010; Hughes et al. 1996]. Finally, to demonstrate that languages created with
Turnstile+ are realistic to program with, we used Cur to work through a graduate-level semester’s
worth of examplesÐroughly volume 1 of the łSoftware Foundationsž curriculum [Pierce et al. 2018].

2 CREATING A TYPED LANGUAGE (STLC) WITH RACKET AND TURNSTILE+

2.1 Interleaving Transformation and Type Checking with Macros

Macros are special compile-time functions that consume and produce syntax objects [Dybvig
et al. 1992], i.e., enhanced (with source location, binding structure, etc.) S-expression ASTs. Fig-
ure 1 (center) illustrates how they are suitable for implementing typed languages because the
syntax transformation and side-condition components of a typical macro definition mirrors the
checking and transformation (e.g., to a lower-level core language) performed by type checkers
(Figure 1 (left)). More specifically, a macro definition deconstructs its input via a syntax pattern (gray
in this paper),1 whose shape dictates the macro’s usage syntax. This input is eventually transformed,
after checking possible side-condition guards, into a macro’s output, which is typically created
with a quasiquotation syntax template (blue).

In a language with macros, a macro expansion compiler phase repeatedly rewrites a program’s
surface syntax according to all macro definitions, until no macro invocations remain. During
expansion, if any of a macro’s side-conditions are not satisfied, compilation fails with an error. By
implementing type rules as these side-conditions, one may implement a type checker as macros.
Since macro definitions are modular components, a macro-based type checker interleaves checking
and transformation (Figure 1 (r)). This differs from the simple architecture depicted by Figure 1 (l),
but it more closely follows the modular nature of a type system’s rule specifications.

Figure 2 presents such rules for the simply typed λ-calculus, split into bidirectional łsynthesizež
(⇒)Ðthe type is the outputÐand łcheckž (⇐)Ðthe type is the inputÐvariants. More specifically a

1To better communicate high-level concepts, some code may be stylized, e.g., we may elide unimportant details, use

abbreviations, color, or subscripts. For example, a define-m macro is shorthand for define-syntax and syntax-parse

pattern matching. Thus, some code may not run as presented, but runnable examples for all code are in our artifact.
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App⇒

Γ ⊢ f ≫ f ⇒ τ1 → τ2 Γ ⊢ e ≫ e ⇐ τ1

Γ ⊢ appf e ≫ app f e ⇒ τ2

Lam⇒

Γ, x ≫ x : τ1 ⊢ e ≫ e ⇒ τ2 x < dom(Γ)

Γ ⊢ λx : τ1.e ≫ λx .e ⇒ τ1 → τ2
App⇐

Γ ⊢ f ≫ f ⇒ τ1 → τ2 τ2 = τ0 Γ ⊢ e ≫ e ⇐ τ1

Γ ⊢ appf e ≫ app f e ⇐ τ0

Lam⇐

Γ, x ≫ x : τ1 ⊢ e ≫ e ⇐ τ2 x < dom(Γ)

Γ ⊢ λx .e ≫ λx .e ⇐ τ1 → τ2

Var⇒

x ≫ x : τ ∈ Γ

Γ ⊢ x ≫ x ⇒ τ

Var⇐

x ≫ x : τ ∈ Γ τ = τ0

Γ ⊢ x ≫ x ⇐ τ0

Fig. 2. Bidirectional łcheck and transformž rules for the simply typed λ-calculus.

judgment Γ ⊢ e ≫ e ⇒ τ reads łin context Γ, e transforms to e and has a type that matches pattern
τ , and Γ ⊢ e ≫ e ⇐ τ reads łin context Γ, e transforms to e and has type equal to τ . This kind
of łcheck and transformž rule, e.g., from Pierce and Turner [1998], is a common way to specify
type systems. In our Figure 2 example, the łtransformž part is a basic type erasure. Since tracking
and manipulating the binders of a program are important for type checking, e.g., when computing
substitution or α-equality, the rules conservatively generate fresh binders for the target language to
distinguish it from source language binders. This paper uses an łoverlinež convention to distinguish
source and target language constructs. For example, a surface λ and (an explicitly-named) app

function application transform to λ and app, respectively, in some (for now unspecified) target
language. The next section shows how one might implement Figure 2’s specification with macros.

2.2 From Specification To Implementation

Figure 3 presents two versions of a Racket module named stlc, each containing an implementation
of Figure 2’s specifications. A #lang at the top of a Racket module declares the language of that
module’s code; thus, Figure 3 (l) depicts racket code. This racket implementation of stlc consists
of two (type checking) macro definitions, #%app and λ, each with two cases corresponding to
analogous ⇒ and ⇐ rules from Figure 2.2 The #%app macro’s first case implements the App⇐
rule; thus its input must additionally include an łexpectedž type from its context3 which binds it
to a τ0 pattern variable.4 The rest of the case follows straightforwardly from the rest of App⇐.
First, it computes the type of the applied function f5, and its erasure, with a call to a synth/≫

function (synth/≫ and other helper functions are explained in Section 2.3). The pattern (→ τ1 τ2)

constrains the type of f to be a function with one input and one output type (implementation of
function types is explained in Section 3). If f’s type fails to match this pattern, type checking fails
with an error. Next, the #%appmacro must check that the output type of the function is equivalent to
the expected type. Then the macro checks that the argument e has type τ1 using function check/≫,
which returns e, the erasure of e. Finally, the macro emits an erased term (#%app f e).

Like App⇒ and App⇐, the second #%app macro case is similar to the first. The difference is that
there is no incoming łexpectedž type. Instead, the macro emits a second output, the type of the
function application term, which is the τ2 from the function type.

2We sometimes use square brackets, which are semantically equivalent to standard parentheses, to help readability.
3Like łthisž from OOP, this-stx is a macro’s syntax object input. It may have łexpectedž type information from the context.
4The #:when and #:with directives specify additional side conditions for a macro. Expansion may only proceed if predicates

following #:when are true, and when the pattern after #:with matches the syntax computed by the subsequent expression.
5Here we use an explicit quasiquote constructor #`, which creates a syntax object according to the template that follows it.
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Dependent Type Systems as Macros 3:5

#lang racket (provide λ #%app) stlc

(define-m #%app

[(#%app f e) #:when (has-expected-τ? this-stx)

#:with τ0 (get-expected-τ this-stx)

#:with [f (→ τ1 τ2)] (synth/≫ #`f)

#:when (τ= #`τ2 #`τ0)

#:with e (check/≫ #`e #`τ1)

#`(#%app f e)]

[(#%app f e)

#:with [f (→ τ1 τ2)] (synth/≫ #`f)

#:with e (check/≫ #`e #`τ1)

(assign #`(#%app f e) #`τ2)])

(define-m λ

[(λ x e) #:when (has-expected-τ? this-stx)

#:with (→ τ1 τ2) (get-expected-τ this-stx)

#:with [x e] (check/≫ #`e #`τ2 #:ctx #`[x : τ1])

#`(λ (x) e)]

[(λ [x : τ1] e)

#:with [x e τ2] (synth/≫ #`e #:ctx #`[x : τ1])

(assign #`(λ (x) e) #`(→ τ1 τ2))])

#lang Turnstile+ (provide λ #%app) stlc

(define-tyrule #%app

[(#%app f e) ⇐ τ0 ≫

[⊢ f ≫ f ⇒ (→ τ1 τ2)] [τ2 τ= τ0]
[

⊢ e ≫ e ⇐ τ1
]

-------------------------------

[⊢ (#%app f e)]]

[(#%app f e) ≫

[⊢ f ≫ f ⇒ (→ τ1 τ2)]
[

⊢ e ≫ e ⇐ τ1
]

-------------------------------

[⊢ (#%app f e) ⇒ τ2]])

(define-tyrule λ

[(λ x e) ⇐ (→ τ1 τ2)≫
[

[x ≫ x : τ1] ⊢ e ≫ e ⇐ τ2
]

--------------------------------

[⊢ (λ (x) e)]]

[(λ [x : τ1] e) ≫

[[x ≫ x : τ1] ⊢ e ≫ e ⇒ τ2]

--------------------------------

[⊢ (λ (x) e) ⇒ (→ τ1 τ2)]])

Fig. 3. STLC implementation, (l) using Racket, and (r) using Turnstile+.

In any syntax template, identifiers bound by in-scope syntax patterns refer to the pieces of syntax
matched in those patterns. For example, in (#%app f e), f refers to f from a previous pattern.
Identifiers not bound in a previous pattern, however, reference bindings from the rule’s definition
context. Thus #%app in the #%app macro’s output is racket’s function application form. (We also
use the overline convention to distinguish untyped Racket forms from any typed counterparts
we may define.) The #% prefix naming convention indicates an implicit form so programmers do
not write #%app explicitly; instead, the macro expander automatically inserts it in front of applied
functions. So the stlc module, by redefining #%app (and exporting it), changes the behavior of
function application.
Figure 3 (l)’s λ macro definition implements the Lam rules from Figure 2, in much the same

way as #%app. The interesting part of λ is that it calls check/≫ and synth/≫ with an extra context
argument consisting of the binding x and its type τ. These functions return one more result as well,
the new łerasedž binder, which is used to construct the output term.
In the Racket ecosystem, a module is a language implementation, and the language’s constructs

are exactly the module’s exports. Since stlc exports #%app and λ, writing #lang stlc at the top of a
module means that the subsequent code is type checked by stlc’s macros. Obviously, programmers
cannot write any stlc code yet because we have not defined any types; in general, however, this
ability to control language featuresÐusers of a particular #lang cannot arbitrarily access features
from another oneÐis useful when implementing dependent types, where unrestrained language
interoperation can accidentally introduce inconsistency in the underlying logic.

The close correspondence between Figure 2’s specification and Figure 3 (l)’s racket implemen-
tation suggests that programmers could implement typed languages using syntax closer to Figure 2.
Figure 3 (r) shows stlc, implemented with Turnstile+. Though the two sides of Figure 3 some-
what resemble each otherÐthe same patterns and templates are just rearrangedÐthe extra layer
is important for usability and reasoning while programming. For example, the left uses explicit
macro operations and thus report errors in this low-level language, e.g., łbad syntaxž. In contrast

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 3. Publication date: January 2020.
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(define (assign e τ) (attach e ’type τ))

(define (synth/≫ e #:ctx [x : τ])

(define x (fresh))

(define env

(envadd-m (curr-env) #`x (assign x #`τ)))

(define e (local-expand e env))

(define τe (detach e ’type))

#`(#,x #,e #,τe))

Turnstile+

(define (has-expected-τ? e) (has-prop? e 'exp))

(define (add-expected-τ e τ) (attach e ’exp τ))

(define (get-expected-τ e) (detach e ’exp))

(define (check/≫ e τ #:ctx ctx)

(define e/exp (add-expected-τ e τ))

#:with [x e τe] (synth/≫ e/exp #:ctx ctx)

(if (τ= #`τe τ) #`(x e) (err "ty mismatch")))

Fig. 4. łType systems as macrosž core API.

the right embeds implicit patterns and templates in a language of type rules, and these abstractions
enable more domain-appropriate errors, e.g., łtype mismatch, expected X, got Yž. Since Turnstile+
sugars the calls to synth/≫ and check/≫ functions with the syntax of the judgments from Figure 2,
the rules are read similarly: the [⊢ e ≫ e ⇒ τ] and

[

⊢ e ≫ e ⇐ τ
]

łpremise judgmentsž are

read, respectively, łe transforms to a term matching pattern e and has type matching pattern τž,
and łe rewrites to a term matching pattern e and has type τž. The łconclusion judgmentž of a
define-tyrule, is split into its input components at the top, corresponding to the macro’s input,
and the output components at the bottom, corresponding to the macro’s outputs. This allows the
rule implementation to be read like code, top to bottom.

2.3 Helper Functions

Despite their similarities, there are key differences between Figures 2 and 3(r): the latter has no Var
rule nor explicit Γ environments. To understand these discrepancies, we look at implementations
of the synth/≫, check/≫, and assign functions, in Figure 4, which reveal how Turnstile+ reuses
Racket’s macro infrastructure to implement these missing parts, and to more generally facilitate
type checking. These helper functions require only a few lower-level operations on syntax; thus
our entire type checker is implemented łas macrosž. Specifically, the functions rely on three macro
system features: (1) a programmatic way to add macro definitions to the macro environment, (2) a
local-expand function that manually initiates macro expansion on a syntax object; and (3) a way of
associating additional information (e.g., types) with syntax objects; we use syntax properties which,
via attach and detach, associate key-value pairs to syntax objects.

Individually, assign attaches a type to a term, at key ’type. The łexpected typež functions use the
same API at key ’exp. The synth/≫ function consumes an expression e and an (optional) ctxÐwhich
has shape [x : τ]Ðrepresenting bindings to add to a type environment. The synth/≫ function
first generates a fresh binding x (corresponding to x in figures 2 and 3). Then it creates a new macro
environment instance, which extends the old one with a new macro definition named x. This new
macro expands to x and its type τ. In this way, the Var rules from Figure 2 are implemented in
exactly the same way as λ and #%app: as a macro that expands to the term and type outputs of the
łtype check and transformž relation. This also explains the lack of Γs in Figure 3; since our macro-
based type checking re-uses Racket’s macro environment as the type environment, scoping of type
environment bindings is automatically handled by the macro expander. A programmer need only
specify the new bindings like for λ. The environment structure with these new bindings are then
passed to local-expand, which invokes the appropriate type checking macro for e. After expanding
(i.e., type checking and transforming) e, its ’type syntax property is retrieved and synth/≫ returns
a triple, as syntax, containing the fresh name, the transformed e, and its type (the quasiquotation #,

escape operator allows splicing metalanguage terms).
The check/≫ function first invokes synth/≫ on term e, checks that the actual and expected

type match using type-equality function τ=, and returns the expanded e if successful. For this
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(λ [x : Int] (add1 x))

λ type rule macro (2nd case)

(synth/≫ (add1 x) [x : Int])

֒→(local-expand (add1 x) <x7→x,Int>)

(λ x (#%app add1 x)) : (→ Int Int)

#%app (synth/≫ add1)

type rule ֒→(local-expand add1)

macro (check/≫ x Int)

(2nd case) ֒→(local-expand x)

add1 macro

x macro

(add1 x)

(#%app add1 x)

: Int

add1

add1 : (→ Int Int)

x

x : Int

Fig. 5. Macro Call Graph For a Basic stlc Example

paper, we assume τ= (not shown) is syntactic equality up to α-equivalence; it is straightforward to
implement directly on the concrete syntax, i.e., we need not convert to an alternate representation
like deBruijn indices, since syntax objects are already aware of the program’s binding structure.
Figure 5 shows a macro call graph for an stlc example, (λ [x : Int] (add1 x)), where we

assume Figure 3 is extended with arrow and Int types, and an add1 primitive with type (→ Int

Int). Expansion (and type checking) begins with the λ macro, whose invocation calls the synth/≫

function, which in turn calls local-expand with the lambda body, which invokes the next type
checking macro, #%app. Return edges are marked with macro outputs, i.e., expanded terms and their
type (attached as a syntax property), so the example has final type (→ Int Int).

3 LIGHTWEIGHT DEPENDENT TYPES, FOR VIDEO

Chang et al. [2017]’s original Turnstile could not handle dependent types since it assumes that
terms and types are distinct. We introduce how Turnstile+ covers this deficit with Typed Video,
a DSL with indexed typesÐłlightweightž dependent types in the style of Dependent ML [Xi 2007]Ð
implemented łas macrosž. With indexed types, we can lift some terms (the index language) to the
type level to express simple predicates about those terms. While Andersen et al. [2017] introduced
Typed Video and briefly describe a few type rules, our work is the first to explain the underlying
implementation details of such rules and their accompanying types. (As Typed Video is not our
main focus, we do ignore unrelated parts of the language, e.g., the details of constraint solving.)
Typed Video is a typed version of Andersen et al. [2017]’s video language, a DSL for editing

videos that has been used to create the video proceedings of summer schools like OPLSS and con-
ferences like POPL. Typed Video’s indexed types statically rule out errors that arise when creating
and combining video streams. More specifically, a Video program manipulates producersÐstreams
of data such as audio, video, or some combination thereofÐcutting, splicing, and mixing them
together into a final product. Since video editing is a multi-phase process, errorsÐe.g., accidentally
using more data than existsÐoften do not manifest until late in the editing process, usually during
rendering, making them hard to find. To catch these problems earlier, Typed Video assigns producer
values a Prod type, indexed by its length. This is an ideal type system since (even untyped) video
editing already requires annotating many expressions with their length.
Below is a function that combines audio, video, and slides to create a conference talk video.

#lang typed/video video-prog

(define (mk-conf-talk [n : Nat] [aud : (Prod n)] [vid : (Prod n)] [slide : (Prod n)])

-> (Prod (+ n 6)) #:when (> n 3)
(playlist (img "conf-logo.png" #:len 6)

(fade #:len 3)

(overlay aud vid slide)))

The mk-conf-talk function consumes an integer length n and audio, video, and slide producers
with types (Prod n), meaning they must be at least n frames long. The function combines its inputs
with overlay, and further adds a logo that fades into the main content. The function specifies an
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#lang Turnstile+

(define-type Nat : Type)

(define-type Prod : Nat -> Type)

(define-type →vid

#:bind [X : Type] : Type -> Type)

(define-tyrule (#%app f e) ≫

[⊢ f ≫ f ⇒ (→vid [x : τ1] τ2)]

[⊢ e ≫ e ⇐ τ1]

------------------------------------

[⊢ (#%appvid f e) ⇒ (subst e x τ2)])

typed/video

(define-tyrule λ

[(_ [x ::: τ1] e) ≫ ;Nat case

[⊢ τ1 ≫ Nat ⇐ Type]

[[x ≫ x : Nat] ⊢ e ≫ e ⇒ τ2]

-----------------------------

[⊢ (λvid (x) e) ⇒ (→vid [x : Nat] τ2)]]

[(_ [x ::: τ1] e) ≫
[

⊢ τ1 ≫ τ1 ⇐ Type
]

[[x ≫ x : τ1] ⊢ e ≫ e ⇒ τ2] [⊢ τ2 ≫ _ ⇐ Type]

-----------------------------

[⊢ (λvid (x) e) ⇒ (→vid [(fresh) : τ1] τ2)]])

Fig. 6. Typed Video type definitions, lambda, and function application rules.

additional constraint (> n 3), to ensure that the inputs contain enough data to perform the fade
transition. Finally, the output type specifies that the input is extended by 6 frames, to account for
the added logo. The function is assigned a binding function type, where each argument is named:

(→vid [n : Nat] [a : (Prod n)] [v : (Prod n)] [sl : (Prod n)] (Prod (+ n 6)) #:when (> n 3))

The type of each argument may also reference the names preceding it, i.e., it is a telescope. The next
subsection shows how one may implement such a type with Turnstile+.

3.1 A Core for Typed Video, NowWith Types

Figure 6 shows Typed Video’s core, implemented with Turnstile+; it resembles STLC from Fig-
ure 3 (r) except extra define-type rules specify how to construct valid types. For example, the rule
for Nat says that a Nat instance has łtypež Type.6 The Prod rule for producers says that constructing
a Prod type requires a Nat, i.e., a a term, argument. Finally, the →vid specifies binders, which sub-
sequent arguments may reference. The λ rule (we only show łsynthž cases) shows how to create
terms with →vid types. In the first case, the parameter is a Nat, which may be referenced in both e

and its type. Only Nat terms may be lifted, however, so a second λ case handles non-Nat parameters:
its output→vid is constructed with a fresh dummy parameter (note the quasiquoting), which is
not referenced in τ2. (The rule checks τ2 a second time, to ensure that it does not reference x.) The
#%app rule shows how Nat arguments are lifted to types: the conclusion replaces, in τ2, references to
the x binder with the application argument term.7 Both rules transform into untyped Video terms.

3.2 Defining łTypež Rules For Types

Sections 3.2 to 3.4 explain how define-type is implemented. A define-type definition specifies a
checking rule, for a type. We can implement such a rule with the previously seen define-tyrule

because define-tyrule’s checking of syntax does not actually know the difference between łtermsž
or łtypesž. Figure 7 shows what these explicit define-tyrules might look like for both plain and
Typed Video’s function types. The rule for a standard → checks that its input and output have
type Type. But what should be the łtransformž output of the rule? Typed λ transforms to a target

language’s λ, but we havemore freedom in choosing a type’s underlying representation. Considering
desired operations on types, however, reveals some criteria for such a representation. Specifically,
type checking requires computing binding-aware operations like α-equality and capture-avoiding

6We assume Type : Type here. Section 5’s Cur implements a hierarchy but this paper does not discuss these theoretical

choices since they are largely orthogonal to our implementation techniques.
7This single-case rule, used in the rest of paper for brevity, combines the rule name and input pattern. For rules like these

without a łcheckž clause, Turnstile+ uses a default łcheckž implemented with łsynthž and τ=.
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(struct → (in out))

(define-tyrule (→ τ1 τ2) ≫

[⊢ τ1 ≫ τ1 ⇐ Type]

[⊢ τ2 ≫ τ2 ⇐ Type]

----------

[⊢ (#%app → τ1 τ2) ⇒ Type])

(struct →vid (in out))

(define-tyrule (→vid [x : τ1] τ2) ≫

[⊢ τ1 ≫ τ1 ⇐ Type]
[

[x ≫ x : τ1] ⊢ τ2 ≫ τ2 ⇐ Type
]

-----------------------------

[⊢ (#%app →vid τ1 (λ (x) τ2)) ⇒ Type])

Fig. 7. Explicit define-tyrule type rules for single-arity function types, (l)→, (r)→vid

(struct → (ins out))

(define-tyrule (→ τ1 . . . τ2) ≫

[⊢ τ1 ≫ τ1 ⇐ Type] . . .

[⊢ τ2 ≫ τ2 ⇐ Type]

----------

[⊢ (#%app → (τ1 . . .) τ2) ⇒ Type])

(struct →vid (types))

(define-tyrule (→wrong [x : τ1] . . . τ2) ≫

[[x ≫ x : τ1] . . . ⊢ [τ1 ≫ τ1 ⇐ Type] . . .]

[[x ≫ x : τ1] . . . ⊢ [τ2 ≫ τ2 ⇐ Type]]

-----------------------------

[⊢ (#%app →vid (λ (x . . .) τ1 . . . τ2)) ⇒ Type])

(define-tyrule (→vid [x : τ1] . . . τ2)
[ [

x ≫ x : τ1 ≫ τ1 ⇐ Type
]

. . . ⊢ τ2 ≫ τ2 ⇐ Type
]

-----------------------------

[⊢ (#%app →vid (λ (x . . .) τ1 . . . τ2)) ⇒ Type])

Fig. 8. Explicit define-tyrule type rules for multi-arity function types, (l)→, (r)→vid

substitution. Since syntax objects know a program’s binding structure, using a binding-valid
representation lets us exploit the macro system to implement such operations for free. Thus our
criteria for a type representation: (1) uniquely identifies the type; (2) includes the arguments to the
type constructor; and 3) respects hygiene, i.e., it has a valid binding structure in the target language.
For the first two criteria, we define a (named) record→, declared with struct, and represent→with
a syntax object that applies → to the function type constructor’s arguments, as seen in Figure 7 (l).
For binding types like →vid in Figure 7 (r), to satisfy the hygiene criteria, its representation in the

conclusion includes a λ that wraps and binds references to x in τ2.

3.3 Type Checking Telescopes: A New Turnstile+ Premise

Suppose we want multi-arity function types. The → rule in Figure 8 (l) uses an ellipsis pattern . . .,
which means łmatch the preceding pattern zero or more timesž, to specify multiple arguments. Any
pattern variables in this preceding pattern, like τ1, must be accompanied with another ellipsis when
used in a syntax template, e.g., τ1. . .. Turnstile+ allows writing an ellipsis after a premise, which
automatically inserts corresponding ellipses for all patterns and templates in that premise. For
example the first premise in Figure 8 (l) checks that each type in τ1. . . has type Type, and matches
the expansion of those types to τ1. . ..
The →wrong rule in Figure 8 (r) tries to use the same ellipsis pattern as the left, but this is the

wrong binding structure because each τ1 is checked in a context with every x, including its own. It’s
wrong because the . . . usually means łmapž. But to type check the telescoping binding structure on
the right, we need a łfoldž operation that interleaves binding with checking. This means we need a
new kind of premise, seen in the multi-arity →vid rule in Figure 8 (r), which is a corrected version
of →wrong. Specifically, a premise

[

x ≫ x : τ1 ≫ τ1 ⇐ Type
]

. . . checks each τ1, but also names
it so that subsequent type checking invoked by the ellipsis may reference the argument.

This new premise requires revising Figure 4’s API to accommodate the fold operation; the new
API is in Figure 9. The main function is now expand/bind, which consumes an identifier x, a syntax
object stx, a tag at which to associate x with stx (e.g., ’type), and a (macro) environment env. This
new API is agnostic: we do not care whether stx is a type, term, or something else. The expand/bind
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(define (expand/bind x stx tag env)

(define stx (local-expand stx env))

(env-add env x tag stx))

(define (env-add env x tag stx)

(define x (fresh))

(env-add-m env x (attach x tag stx)))

(define (expand/bind/check x stx tag stxval env)

(define envnew (expand/bind x stx tag env))

(if ( stxα= (detach (lookup envnew x) tag) stxval)

envnew

(err "ty mismatch")))

Fig. 9. Type- and term-agnostic, revised version of the API from Figure 4; supports interleaved bind and check.

function expands stx in the context of env’s bindings, and then adds x to env as a łtype rulež macro
where x expands to a fresh x, with stx attached at some tag. For rules that do not want to bind after
checking, expand/bind can be called with a dummy x and tag. Folding łcheckž premises, however,
would use expand/bind/check, which wraps expand/bind. It consumes an additional argument
stxval, and łchecksž that expanding stx results in a syntax object that has tag łequalž to stxval.
Concretely, the premise of Figure 8 (r)’s →vid rule would fold expand/bind/check over x. . ., τ1. . .,
and Type. . ., where each τ1 is the stx argument and Type is stxval. The fold would accumulate
the env argument which holds the resulting x. . . and τ1 . . .. Where Figure 4 used τ=, Figure 9 uses
stxα= , which is an agnostic equality function. The box denotes an interposition point; Turnstile+
implements several of these overloadable hooks at key points to enable more extensible rules.

3.4 Putting it All Together

We need one more component for define-type. The rule outputs in Figure 8 are still somewhat
arbitrary; a programmer should not need to know this underlying representation. Instead, they
should use a type’s surface syntax, as Figure 3 does when pattern matching with →. To enable this,
we define łpattern macrosž for each type, which are used exclusively in syntax pattern positions:

(define-pattern-m (→vid [x : τ1] . . . τ2) (#%app →vid (λ (x . . .) τ1 . . . τ2)))

This macro matches on, but hides, a type’s internal representation. A pattern macro may have
the same name as the type because its expansion occurs before, i.e., in a different namespace
from, a define-tyrule. This feature relieves Turnstile+ programmers from a heavy notational
burden. With pattern macros, along with a struct declaration for the internal representation, and
a define-tyrule implementing the type constructor rule we can implement define-type, which is
just sugar for this collection of definitions.

3.5 Type-Level Computation

Since Typed Video types may contain expressions, α-equality alone no longer suffices. Thus, we
also define a type normalization function, which is straightforward using the macro system’s
facilities for manipulating syntax. To install this normalization function, we do not need to change
any rules; instead, we take advantage of another Turnstile+ interposition point, in expand/bind:

(define (expand/bind x stx tag env) (env-add env x tag ( norm stx env)))

This new version modifies Figure 9’s version by replacing local-expand with an overloadable
norm (that itself defaults to local-expand). This ensures that only normal forms are used when

computing equality with stxα= in Figure 9. For Typed Video, we implement an interpreter for the
index language. Figure 10 conveys the basic idea. It uses define- norm to overload norm , which is
implemented as a series of pattern-body cases. The first two cases match literal values. The third
case matches on addition, recursively calling norm on the arguments. If evaluating those terms
produce syntactic literal numbers, then the actual arithmetic operation is performed; otherwise,
normalization produces a normalized addition syntax object. This fourth case is similar: if the input
is a Producer, then its index is normalized. Finally, the last case leaves the type unchanged.
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#lang Turnstile+ typed/video

(define- norm

[n #:when (nat-lit? n) n] [b #:when (bool-lit? b) b]

[(+ n m) #:with n ( norm n) #:with m ( norm m)

(if (and (nat-lit? n) (nat-lit? m)) (+ (stx->lit n) (stx->lit m)) (+ n m))]

[(Producer n) (Producer ( norm n))] [other other])

Fig. 10. Excerpt of type-level evaluation in the Typed Video language.

#lang Turnstile+

(define-type Π #:bind [X : Type] : Type -> Type)

(define-tyrule (#%app f e) ≫

[⊢ f ≫ f ⇒ (Π [X : τ1] τ2)]

[⊢ e ≫ e ⇐ τ1]

------------------------------------

[⊢ (β f e) ⇒ (⇑ (subst e X τ2))])

dep-lang

(define-tyrule (λ [x : τ] e) ≫

[⊢ τ ≫ τ ⇐ Type]

[[x ≫ x : τ] ⊢ e ≫ e ⇒ τ2]

------------------------------

[⊢ (λ (x) e) ⇒ (Π [x : τ] τ2)])

(define-red β (#%app (λ (x) body) e) ~> (subst e x body))

Fig. 11. A full-spectrum dependently typed lambda calculus.

4 A DEPENDENTLY-TYPED CALCULUS

The approach to type-level computation for Section 3’s Typed Video suffices for a simple index
language but this approach is not extensible, e.g., it breaks down for languages where introducing
new datatypes is possible. This section presents a more general and extensible approach to adding
type-level computation, which we dub normalization by macro expansion because each reduction
rule is implemented as a separate macro. We explain using a calculus with full-spectrum dependent
types, comparable to the Calculus of Constructions (CC) [Coquand and Huet 1988], in which
there is no distinction between terms and types. We then extend this initial implementation with
type schemas, à la Martin-Löf Type Theory [Martin-Löf 1975], and finally add inductive types,
demonstrating that our approach scales to the calculi used in contemporary proof assistants. Further,
each extension is modular: it only defines new constructs and does not modify prior code.

4.1 Defining Type-Level Reductions

This section introduces a Turnstile+ construct called define-red, for defining type-level computa-
tion. Figure 11 presents dep-lang, which uses define-red to define a β reduction rule by specifying
a redex (as a syntax pattern) and a contractum (as a template). dep-lang also upgrades Figure 3’s
STLC by: (1) changing → to Π, the dependent function type whose output type can refer to its
input; and (2) modifying λ and #%app to introduce and eliminate Π. Since the β macro is invoked in
#%app’s output, type computation is interleaved with type checking.
A define-red definition internally defines a macro that rewrites redexes into contractums.

Figure 12 sketches what a β macro might look like. If the first term is a λ (first case), occurrences of
parameter x in the body are replaced with argument e. This reduction may create more redexes in
the contractum, e.g., if the e argument is a function, so β’s first case applies ⇑v1, which łreflectsž
#%app references back to β, enabling further reductions. Otherwise (second case), the result of β is
an unreduced #%app neutral term. This β conceptually captures łnormalization by macro expansionž,
but it’s still not extensible since ⇑v1 would need to know about all possible reduction rules in advance.

Instead, Figure 13 defines a new ⇑, extensible via syntax properties. Instead of directly replacing
#%app, ⇑ traverses a piece of syntax and checks for a ’reflect-name property. If it exists, its value
is used as the reflected name. Correspondingly, mk-reflected creates such an annotated syntax,
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(define-m β

[((λ (x) body) e) (⇑v1 (subst e x body))]

[(f e) (#%app f e)])) ; neutral term

; ⇑v1: fn mapping #%app back to β,

;NOT extensible

(define (⇑v1 e) (subst β #%app e))

Fig. 12. Possible β reduction rule, implemented as a plain macro, but not extensible.

(define ⇑ ; extensible reflect fn

[x #:when (and (id? x)(has-reflid? x))

(detach x ’reflect-name)]

[(e . . .) ((⇑ e) . . .)]

[otherwise otherwise])

(define (mk-reflected placehold reflid)

(attach placehold ’reflect-name reflid))

; examples: Turnstile+

; ((mk-reflected #%app β) (λ x x) (λ x x))

; = (#%app (λ x x) (λ x x))

; (⇑ ((mk-reflected #%app β) (λ x x) (λ x x)))

; = (β (λ x x) (λ x x))

; (local-expand

; (⇑ ((mk-reflected #%app β) (λ x x) (λ x x))))

; = (λ x x)

(define-m define-red ;Turnstile+ form for defining reduction rules

[(define-red red-name redex ~> contractum) (define-red red-name [redex ~> contractum])]

[(define-red red-name [(placeholder redex-hd rst . . .) ~> contractum] . . .) ;multi-redex case

⌜(define-m red-name ⌝

[(redex-hd rst . . .) (⇑ contractum)] . . .

⌞ [(e . . .) ((mk-reflected placeholder red-name) e . . .)]))⌟])

Fig. 13. Extensible Turnstile+ API for defining reduction rules, used to define β.

for use in unreducible neutral terms, by attaching a ’reflect-name property to a given placeholder
identifier. With our function application example, the placeholder is #%app and the reflid is β.

Finally, define-red in Figure 13 (bot) is a macro-defining macro that, given a redex pattern and
contractum template, generates a macro with the necessary calls to ⇑ and mk-reflected. Thus
multiple define-red declarations automatically cooperate with each other without knowing of
each other’s presence. The first case of define-red is shorthand for single-redex reduction rules.
It recursively calls the multi-redex second case,8 where the generated macro definition, red-name,
is a generalized version of β from Figure 12. If this macro’s inputs match the supplied redex
pattern, it rewrites them to the specified contractum, letting Racket’s macro patterns and templates
automatically do the work. Otherwise, the result is an unreduced neutral term with the supplied
placeholder at the head, marked with a ’reflect-name property. Thus if later reductions transform
the neutral term into a redex, ⇑ ensures that red-name is invoked again to reduce it.

4.2 A Little Sugar

Figure 11’s dep-lang is roughly the Calculus of Constructions, which is not a real programming
language yet. Fortunately, languages created with our approach are extensible via macros for free.
We demonstrate this with first some small sugar extensions, which we then use to create larger
extensions like type schemas and inductive datatypes. Figure 14 defines currying, multi-argument
forms Π/c, λ/c, and app/c, which unroll into their univariate versions. Π/c also allows omitting
the binder when there is no dependency; in this (third) case, a fresh identifier is used. This allows
programmers to more concisely use Π like the simply typed → when appropriate; correspondingly
it is doubly exported with this alternate → name. All these macros use a łdotž pattern, which
matches a syntax object as a cons pair, split into its head and tail, e.g., in (Π b . rst), b is the first
binder and rst is the rest of the type, which may include more binders. The dep-lang/sugar library
exports these currying forms without their /c suffix, meaning users of the library will have the
original constructs overloaded with these respective sugary forms.

8Since define-red is a macro-defining macro, it has nested syntax templates and patterns, making our usual coloring more

difficult to see. To help, the outer syntax template in the second case is boxed with
⌜
⌞
⌝
⌟ instead of the usual blue text color.
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#lang dep-lang dep-lang/sugar

(provide/rename [Π/c Π] [Π/c →] [λ/c λ] [app/c #%app])

(define-m Π/c [(_ e) e] [(_ [x : τ] . rst) (Π [x : τ] (Π/c . rst))]

[(_ τ . rst) (Π [(fresh) : τ] (Π/c . rst))])

(define-m λ/c [(_ e) e] [(_ x+τ . rst) (λ x+τ (λ/c . rst))])

(define-m app/c [(_ e) e] [(_ f e . rst) (app/c (#%app f e) . rst)])

Fig. 14. A dep-lang library that adds some syntactic sugar for currying.

#lang Turnstile+ (require dep-lang) (provide Nat Z S elimNat #%datum) dep-lang/nat

(define-type Nat : Type) (define-type Z : Nat) (define-type S : Nat -> Nat)

(define-tyrule (elimNat n P mz ms) ≫
[

⊢ n ≫ n ⇐ Nat
]

; target
[

⊢ P ≫ P ⇐ (→ Nat Type)
]

; prop / motive
[

⊢ mz ≫ mz ⇐ (P Z)
]

;method for Z
[

⊢ ms ≫ ms ⇐ (Π [k : Nat] (→ (P k) (P (S k))))
]

;method for S

-----------

[⊢ (evalNat n P mz ms) ⇒ (P n)])

(define-red evalNat
[(evalNat Z P mz ms) ~> mz]

[(evalNat (S k) P mz ms) ~> (ms k (evalNat k P mz ms))])

(define-m #%datum

[(_ n) #:when (zero? n) Z]

[(_ n) #:when (nat-lit? n) (S (#%datum (sub1 (stx->lit n))))]

[(_ x) (#%datum x)]))

Fig. 15. A dep-lang extension for natural numbers.

4.3 An Extension of Natural Numbers

To write interesting programs, dep-lang needs more data types. Thus we extend itÐusing already
described tools and techniquesÐwith a MLTT-style [Nordström et al. 1990] natural number type
schema in Figure 15. Like all Turnstile+ constructs, define-type is not limited to defining łtypesž
in the simply typed sense; instead, it’s suitable for defining any łconstructorž form. Thus this module
uses it to define Nat and its introduction rules Z and S, corresponding to łzerož and łsuccessorž. The
elimination form, elimNat, corresponds to a fold over the datatype. Following the terminology of
McBride [2000], the form (elimNat n P mz ms) takes target to eliminate n, a motive P that describes
the return type of this form, and one method for each case of natural numbers: mz when n is zero
and ms when n is a successor. Method mz must have type (P Z), i.e., the motive applied to zero,
while msmust have type (Π [k : Nat] (→ (P k) (P (S k)))), which mirrors an induction proof:
for any k, given a proof of (P k), we show (P (S k)). Using define-red, we can define reduction
rules for elimNat, one each for Z and S. Observe that the pattern macros Z and S (defined as part of
define-type, explained in Section 3.4) help specify the reduction succinctly.
Finally, the Nat module overloads the meaning of literal data by extending #%datum, another

Racket interposition point that wraps literals. With the new #%datum, users of the dep-lang/nat
can write numeric literals in place of the more cumbersome Z and S constructors. The last #%datum
clause falls back to a core #%datum, making this extension compatible with others that might extend
literal data. We could even support diamond extensions by importing two existing versions of
#%datum (under different names) and use them in separate clauses of a new #%datum.
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#lang Turnstile+ (require dep-lang)

(define-type = : [A : Type] [a : A] [b : A] -> Type)

(define-type refl : [A : Type] [e : A] -> (= A e e))

(define-red eval= (eval= pt (refl A t)) ~> pt)

dep-lang/eq

(define-tyrule (transport t P p w e)≫

[⊢ t ≫ t ⇒ A]
[

⊢ w ≫ w ⇐ A
]

[

⊢ P ≫ P ⇐ (→ A Type)
]

[

⊢ p ≫ p ⇐ (P t)
]

[

⊢ e ≫ e ⇐ (= A t w)
]

--------------

[⊢ (eval= p e) ⇒ (P w)])

Fig. 16. A dep-lang extension for the equality type.

(define-tyrule (define-type name : [A : κ1] . . . -> κ2) ≫ Turnstile+
[ [

A ≫ A : κ1 ≫ κ1 ⇐ Type
]

. . . ⊢ κ2 ≫ κ2 ⇐ Type
]

-----------------------------------

[≻ ⌜(define-tyrule (name A ...) ≫⌝
[

⊢ A ≫ A ⇐ κ1

]

. . .

-------------------

⌞[⊢ (name A . . .) ⇒ κ2]) ⌟] ; rest of the macro elided )

Fig. 17. (Part of) the implementation of define-type, showing instantiation of telescopes.

Notably, we use #lang Turnstile+ to implement this Nat module, not dep-lang, because (un-
like Figure 14) this extension is unsafe. Ideally, the dep-lang trusted core should not have the ability
to add new types and rules that could change the logic. Section 4.5 discusses managing extensions.

4.4 An Equality Type Extension, and Applying Telescopes

Figure 16 presents a module implementing an equality, or identity, type. The transport rule dictates
that for any motive P such that (P a) holds, eliminating a proof that a = b allows concluding (P b).
The eval= reduction then rewrites to pt when the proof is a refl constructor. The = define-type

declaration uses telescopic arguments. While Section 3.3 presented our technique of checking
telescopes, applying telescopic constructors is equally tricky. This subsection addresses the latter
with a novel, pattern-based substitution technique.

Figure 17 shows the relevant parts of define-type, which generates a define-tyrule that uses
this technique. define-type first validates the κ1. . .κ2 annotations supplied by the programmer,
with the new premise syntax from Section 3.3. The conclusion (a ≻ form accommodates emitting
top-level forms like definitions) produces the type rule for name types. The key is the reuse of
the A . . . pattern variables from the premises of the define-type as the pattern variables of the
generated define-tyrule. When the name type constructor is called, A is bound to the arguments
supplied to that constructor. Since A also binds references in κ1. . ., however, uses of κ1. . . in name

automatically have A references replaced with the concrete arguments to the name type constructor,
which is the desired behavior. In other words, we piggyback on substitutions that the macro system
already performs with pattern variables in templates to instantiate type variables. Further, the
technique is safe, i.e., no variables are captured, thanks to hygiene.

4.5 INTERLUDE: Managing Extensions to a Trusted Core

Our macro-based approach gives library writers the same power as language implementers to
add new types and rules. Of course, this is dangerous since they might implement rules incor-
rectly, changing the trusted core. Figure 18 (top) shows a blatant example. Using assign, it defines
false=true as an arbitrary term with type (= false true), rendering previously unprovable theo-
rems, e.g., that (not x) equals x, for all x, provable.
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#lang dep-lang (require dep-lang/bool dep-lang/eq) bad-dep-lang-prog

(define false=true (assign (void) (= false true))) ; should not be able to do this

(λ x (elimBool x (λ y (= (not y) y)) false=true (sym false=true)))

; proves (∀ [x : Bool] (= (not x) x))

#lang dep-lang (require dep-lang/bool dep-lang/eq unsafe/axiom) dep-lang-prog-axioms

(define-axiom false=true (= false true))

(print-assumptions (λ x (elimBool x (λ y (= (not y) y)) false=true (sym false=true))))

; => Axioms used: false=true : (= false true)

#lang Turnstile+ (provide define-axiom print-assumptions) unsafe/axiom

(define-m (define-axiom name τ)
⌜
⌞(define name (attach (assign (void) τ) ’axiom name))

⌝
⌟)

(define-m (print-assumptions e)

(print "Axioms used: ~a" (find-axioms (local-expand #`e)))) ; scans e for axiom props

Fig. 18. (top) dep-lang program showing danger of extensions. (mid/bot) An axiom library to track extensions.

#lang Turnstile+ (require rosette) ; imports z3verify unsafe/z3

(define-m (define-axiom/z3 name e τ)
⌜
⌞(define-m name #:when (z3verify τ) (attach (assign (void) τ) ’axiom name ’z3 name))

⌝
⌟)

#lang Turnstile+ (provide (rename [require/report require])) dep-lang

(define (maybe-report-extensions! module-path)

(when (not (equal? (get-lang module-path) dep-lang))

(print "using extension:" module-path)))

(define-m (require/report module-path)

(require module-path) (maybe-report-extensions! module-path))

Fig. 19. (top) solver-aided axioms; (bot) overloading behavior of require and provide.

Fortunately, the ability of macros to control syntax can also help tame this power. This subsection
shows several possibilities. Any extensions in the paper may use the following mechanisms. A first
step is to exclude łunsafež extension capabilities, like assign, from core dep-lang. Figure 18 (mid)
shows the same program, but with łaxiomsž marked. Specifically, the program explicitly imports
unsafe/axiom (Figure 18 (bot)), which has two constructs: define-axiom produces an assign, but
tagged with an extra ’axiom property; print-assumptions then scans a term for these marked
subterms and reports them. Using these constructs, programmers can at least know when they are
using unproven axioms. Proof assistants like Coq have a similar feature.
With our framework, we can do more; Figure 19 shows two possibilities. The first (top) is

another axiom-definer library; it provides define-axiom/z3, which is like define-axiom, except it
asks a Z3 solver to verify the theorem before accepting it. Since our extensions are linguistically
supported, not third-party tools, we may use arbitrary Racket libraries; thus we call on the Rosette
language [Torlak and Bodik 2014] to help translate to SMT-LIB terms. The resulting term is marked
as both ’axiom and ’z3axiom, enabling more fine-grained classification. (Of course, the solver must
now be trusted. We are currently working to translate Z3 proof scripts back to dep-lang terms.)
A remaining loophole is that users must explicitly use these axiom libraries; they could just as

easily use another library that does not mark axioms. Figure 19 (bot) shows one way to address this,
by modifying a language’s import mechanism. Specifically, require/report wraps require so it
warns if an imported module is not implemented with the trusted dep-lang core (we can easily error
instead of warning if we want a safe non-extensible language). If dep-lang uses require/report
as its only import mechanism, users cannot circumvent it.
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#lang Turnstile+ dep-ind-lang

(define-tyrule (define-datatype T [A : τA] . . . : τ [C x+τ . . . : τC] . . .) ≫

[[A ≫ A : τA ≫ τA ⇐ Type] . . . [T ≫ T : (Π [A : τA] . . . τ)] ⊢ [τ ≫ (Π [i : τi] . . . τT) ⇐ Type]

[(Π x+τ . . . τC) ≫ (Π [i+x : τ1] . . . (T τ2 . . .)) ⇐ Type] . . . ]

#:with (((ix . . . xrec) . . .) . . .) (find-recur T (([i+x τ1] . . .) . . .))

#:with ((τ2i . . .) ...) (drop-params ((τ2 . . .) . . .))

--------------------------

[≻ ⌜(define-type T : [A : τA] . . . [i : τi] . . . -> τT) ; define the type ⌝

(define-type C : [A : τA] . . . [i+x : τ1] . . . -> (T τ2 . . .)) . . . ; and the data constructors

(define-tyrule (elimT v P m ...) ; define eliminator for T

[⊢ v ≫ v ⇒ (T A . . . iv . . .)] ; target

[⊢ P ≫ P ⇐ (Π [i : τi]. . . (→ (T A . . . i . . .) Type))] ;motive

[⊢ m ≫ m ⇐ (Π [i+x : τ1]. . . (→ (P ix. . . xrec). . . (P τ2i. . . (C A. . . i+x. . .))))] . . .

----------------------

[⊢ (evalT v P m . . .) ⇒ (P iv . . . v)])

(define-red evalT ; define reduction rule for eliminator

⌞ [(elimT (C A . . . i+x . . .) P m . . .) ~> (m i+x . . . (evalT xrec P m . . .) . . .)] . . .) ⌟])

Fig. 20. The define-datatype form allows dep-ind-lang programmers to define inductive datatypes.

4.6 Indexed Inductive Type Families

Instead of modifying the trusted core with type schemas, most proof assistants support safe
extension with inductively-defined type families [Dybjer 1994]. In other words, the core is extended
just once with a set of sound, general-purpose rules for defining new types. We straightforwardly
add this capability to dep-lang, using the constructs we have already presented, to get dep-ind-
lang. Specifically, Figure 20 presents define-datatype, which is based on Brady’s presentation of
TT [Brady 2005]. The complete implementation is mere tens of lines of code,9 yet it makes dep-
ind-lang comparable to the core of proof assistants like Coq, demonstrating that our macro-based
approach scales to expressive type theories while maintaining convenient notation.
We use a concrete length-indexed list example to help explain define-datatype:

#lang dep-ind-lang list-prog

(define-datatype Vec [A : Type] : (→ [i : Nat] Type)

[nil : (Vec A 0)]

[cons [k : Nat] [x : A] [xs : (Vec A k)] : (Vec A (S k))])

The main source of complexity compared to previous type definitions is that indexed inductive
types distinguish between parameters and indices (A and i in the figure). Parameters are invariant
across the definition while indices may vary. Thus data constructor declarations (nil and cons) may
reference parameters A from the type definition, but indices must be specific to each constructor.
Briefly, the define-datatype macro produces the following definitions: define-types to define

the type and its data constructors; a define-tyrule elimination rule; and a define-red reduction
rule for the eliminators. A line-by-line explanation follows.

• (define-tyrule (define-datatype T [A : τA] . . . : τ [C x+τ . . . : τC] . . .) ≫

This defines a new language construct named define-datatype. When used, define-datatype
defines a type constructor named T that itself has type (Π [A : τA] . . . τ). A colon distinguishes
the parameters from the rest of the type and the τ part may include indices, as in the Vec example.
The rest of this input pattern specifies the data constructors C . . . that produce terms of type T;
each C has type (Π [A : τA] . . . x+τ . . . τC) where the A . . . are the same parameters from T.

9Our goal here is to communicate the essence of the definition clearly; thus we do elide positivity checking and some other

definitions that would clutter the code, but the actual implementation is not too much longer.
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• [[A ≫ A : τA ≫ τA ⇐ Type] . . . [T ≫ T : (Π [A : τA] . . . τ)] ⊢ [τ ≫ (Π [i : τi] . . . τT) ⇐ Type]

[(Π x+τ . . . τC) ≫ (Π [i+x : τ1] . . . (T τ2 . . .)) ⇐ Type] . . . ]

These premises validate the types supplied by a programmer writing a define-datatype. Since
these types may recursively reference the type being defined, the type environment includes T.
The pattern for the expansion of τ includes explicit i index pattern variables; similarly, the data
constructor type patterns include i+x variables for the constructor arguments, which may include
indices. Finally, the output of each data constructor must be of type T, applied to some τ2 . . ..

• #:with (((ix . . . xrec) . . .) . . .) (find-recur T (([i+x τ1] . . .) . . .))

#:with ((τ2i . . .) ...) (drop-params ((τ2 . . .) . . .))

These lines extract subcomponents of the datatype definition that are needed to define the eliminator
and reduction rules. The first #:with finds the recursive arguments of the data constructors; that is,
those arguments with type T, where each (ix . . .xrec) is a subset of its corresponding (i+x . . .).
The second #:with extracts the index arguments unique to each data constructor, e.g., the index for
nil and cons is 0 and (S k), respectively.

• (define-type T : [A : τA] . . . [i : τi] . . . -> τT) ; define the type

(define-type C : [A : τA] . . . [i+x : τ1] . . . -> (T τ2 . . .)) . . . ; and the data constructors

This defines type constructor T and data constructors C. Note that the latter includes parameters A
that were not originally specified with the arguments of C.

• (define-tyrule (elimT v P m ...) ; define eliminator for terms of type T

[⊢ v ≫ v ⇒ (T A . . . iv . . .)] ; target

[⊢ P ≫ P ⇐ (Π [i : τi] . . . (→ (T A . . . i . . .) Type))] ;motive

[⊢ m ≫ m ⇐ (Π [i+x : τ1] . . . (→ (P ix . . . xrec) . . . (P τ2i . . . (C A . . . i+x . . .))))] . . .

----------------------

[⊢ (evalT v P m . . .) ⇒ (P iv . . . v)])

Defines an eliminator elimT for terms of type T, which has three arguments: a target v, a motive P, and
methods m, one for each C. This general eliminator definition almost exactly matches its theoretical
presentation in [Brady 2005], again showing how Turnstile+ code closely matches its specification.
The target v must have type T. In the pattern for v’s type, the reuse of pattern variables A from
the premises to define-datatype uses the pattern-based type instantiation technique introduced
in Section 4.4. Within this elimination rule, any other pattern variables from define-datatype’s
input with references to A, e.g., τi or τ1, will automatically be instantiated with v’s parameters
by the macro system. We do not use this technique, however for indices, which are new pattern
variables iv. The motive P is a function that consumes indices and a value with type T at those
indices, and returns a type for the result of elimination. As mentioned, τi are the types of indexes,
but automatically instantiated with the inferred concrete parameters of target v.

A call to the eliminator must include one method m for each constructor C. Each method consumes
the same inputs as each C, as specified in the input to define-datatype, as well as one extra argument
for each recursive xrec. These latter arguments represent recursive applications of the eliminators,
so their types are specified by the motive P, i.e., (P ix . . . xrec). The type (P τ2i . . . (C A . . . i+x

. . .)) of each method’s result is also determined by the motive, where the τ2i are the indices specific
to each C constructor. Finally, the eliminator output calls reduction rule evalT to reduce redexes
where v is a fully-applied constructor. Its type is determined by the motive applied to v itself.

• (define-red evalT ; define reduction rule for eliminator

[(elimT (C A . . . i+x . . .) P m . . .) ~> (m i+x . . . (evalT xrec P m . . .) . . .)] . . .)])

This last definition is a define-red reduction rule (from Figure 13) consisting of a series of redexes,
one for each constructor C. It states that elimination of a fully-applied constructor C reduces to
an application of the method for that constructor, where the recursive arguments to the method
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#lang Turnstile+ (require Turnstile+/unification) Cur

(define-tyrule (define-implicit nameabbrv = name #:omit n)

[⊢ name ≫ _ ⇒ (Π [X : τ] . . . τout)]

#:with (τexplicit . . .) (stx-drop n (τ . . .)) #:with (Ximplicit . . .) (stx-take n (X . . .))

---------------

[≻ ⌜(define-pattern-m (nameabbrv patexplicit . . .) (name Ximplicit . . . patexplicit . . .)) ⌝

(define-tyrule (nameabbrv argexplicit . . .) ⇐ τexpect ≫

[⊢ argexplicit ≫ argexplicit ⇒ τarg] . . .

#:with θ (unify ([τexpect τout] [τarg τexplicit] . . .) ())

#:with (argimplicit . . .) (lookup Ximplicit θ)

------------------------

⌞ [≻ (name argimplicit . . . argexplicit . . .)]) ⌟])

Fig. 21. Cur extension for declaring implicit arguments.

(define (unify constraintsτ=τ θ) Turnstile+/unification

(syntax-parse constraintsτ=τ

[() θ] ; (1) base case [([τ x] . rst) (unify ([x τ] . rst) θ)] ; (2) swap id to lhs

[([x τ] . rst) #:when (in? x (dom θ)) (unify ([(lookup x θ) τ] . rst) θ)] ; (3) conflict

[([x τ] . rst) #:when (not (occurs x τ)) ; (4) elim

(unify (subst τ x rst) ([x τ] (substrng τ x θ)))]

[([τ1 τ2] . rst) #:when (τ= τ1 τ2) (unify rst θ)] ; (5) delete

[([(#%app C1 τ1. . .) (#%app C2 τ2. . .)] . rst) #:when (and (= C1 C2) (len= (τ1 . . .) (τ2 . . .)))

(unify ([τ1 τ2] . . . . rst) θ)] ; (6) decompose

[([(λ x1 e1) (λ x2 e2)] . rst) (unify ([e1 (subst x1 x2 e2)] . rst) θ)] ; (7) HO case

[([τ1 τ2] . rst) (tyerror "could not unify τ1 and τ2")])) ; (8) error

Fig. 22. Turnstile+ basic unification function.

are additional invocations of the eliminator on the recursive constructor arguments. The macro
system’s pattern language naturally associates each Cwith its method m, again resulting in a concise
definition that matches what language designers write on paper.

5 FROM CALCULUS TO PROGRAMMING LANGUAGE: INTRODUCING CUR

To show that our approach to implementing dependent types scales to realistic languages, this
section presents Cur, an extension of dep-ind-lang with features expected in such languages.
Specifically, we add implicit arguments, pattern matching, and recursive top-level function defini-
tions. To help implement these features, we show how a macro system makes it straightforward to
implement operations like unification and features like generic methods for types in Turnstile+.

5.1 Implicit Arguments and Unification

Figure 21 shows define-implicit, a form for declaring implicit arguments (roughly like Coq’s
łArgumentsž extension). It defines nameabbrv, which is equivalent to a given name function without
its first n arguments. The define-implicit form emits two definitions; the first is a pattern macro
that allows omitting the same arguments in patterns as well. The second, the new nameabbrv, relies
on a Turnstile+ unify function to compute the omitted arguments. The unify function consumes
constraints in the form of pairs of types that should be considered equalÐhere it’s the types of its
explicit arguments and the expected type of the whole term, paired with the analogous types from
name’s original function typeÐand returns a set of substitutions θ for the variables in the types that
would indeed make the types equal. The second unify argument is an initial (empty) substitution.
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(define-tyrule (match e #:as x #:with-indx i. . . #:in τin #:return τout case. . .)≫ Cur
[

⊢ e ≫ e ⇐ τin
]

#:with def (get-datatype-def τin) #:with elim-name (get-elim-name def)

#:when (cases-complete? (case . . .) def)

[≻ (elim-name e (λ i . . . x τout) (case->method case def) . . .)])

(define-m (case->method [(C x ...) body] def)

#:with (xrec ...) (get-xrec (C x ...) def)

(λ x ... xrec ... body))

Fig. 23. A pattern matcher for Cur.

; (part of) Turnstile+ generic API Turnstile+/typedef

(define-tyrule (define-type tyname ... #:implements methname meth . . .) ; . . .

⌞(define tyname (hash-table methname meth . . .))⌟)

(define-m (define-generic-type-method methname)

⌜(define-tyrule (methname τ) ≫ ⌝
[

⊢ τ ≫ (#%app tyname _. . .) ⇐ Type
]

⌞ [≻ (dict-ref (get-dict tyname) methname)])⌟)

(define-generic-type-method get-datatype-def) ;Use of Turnstile+ generic API Cur

(define-tyrule (define-datatype . . .) ; . . .

⌞(define-type . . . #:implements get-datatype-def (λ (ty) <the entire datatype def>))⌟)

Fig. 24. (top) Turnstile+’s generic interface for types, (bot) example use of the interface

Figure 22 shows a basic unification function as a Turnstile+ library; it is roughly the well-
known Martelli and Montanari [1982] algorithm, with an extra higher-order case for binding forms.
We show it to demonstrate how a macro system’s syntax manipulation and handling of binding
makes it straightforward to implement operations like unification, since the implementation cases
more or less correspond to the algorithm’s specification. The eight cases may be summarized
as (in order of implementation): (1) base case, which returns the accumulated substitution θ; (2)
swaps identifiers to the left side; (3) handles conflicting substitutions for a variable by adding a
constraint; (4) eliminates a constraint by adding a substitution for x to θ, replacing x with τ in the
existing substitutions and constraints; (5) drops a constraint if the types are equal; (6) decomposes
constructor applications into constraints for its arguments; (7) a higher-order case that adds a new
constraint for the bodies; and (8) an error case when a constraint has types that are not equal.

5.2 Dependent Pattern Matching and Generic Type Methods

Explicit eliminators are unwieldly to use; most programmers prefer pattern matching instead. Fig-
ure 23 sketches a dependent pattern matcher that is sugar for the underlying eliminator. (This basic
matcher’s goal is to illustrate Turnstile+’s generic interface. We are exploring more sophisticated
translations, e.g., Goguen et al. [2006].) The key to match is determining which eliminator to use.
More specifically, for any given type, we need the original datatype definition. In the implementa-
tion of match, a generic get-datatype-def function returns this information. This function must
behave differently depending on its argument type, however, and thus its implementation relies on
a generic method interface for types in Turnstile+. Once match has the original datatype definition,
it may generate the equivalent eliminator term by: (1) computing the eliminator name, (2) checking
that the case patterns are complete, and (3) converting the case patterns to eliminator methods by
adding the recursive arguments.
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Figure 24 (top) sketches howTurnstile+’s generic typemethod interfaceworks. First, define-type
from section 3.4 is modified to additionally emit one more definition: a method table that is available
during macro expansion. Then a programmer, using define-generic-type-method, may define a
generic rule that, based on a given type, looks up the method in that type’s table and dispatches to
it. It can do this because the internal name of the type tyname is also the name of the method table.
There’s no name conflict because the names are bound at different phases of macro expansion.

Figure 24 (bot) shows a usage of this generic interface to implement get-datatype-def, the
generic method used in Figure 23 that returns the original datatype definition. A programmer first
declares the generic method with define-generic-type-method. Then, the define-type generated
by define-datatype uses the extra #:implements option to define type-specific versions of the
function. In this case, it just returns the entire input to define-datatype.

5.3 Recursive Function Definitions

Realistic programming languages allow programmers to write recursive top-level pattern-matching
function definitions. Some languages might define such a construct as sugar over λs which, when
combined with match from section 5.2, gets part of the way there, e.g.:

(define-tyrule (definebad f [x : τ] . . . : τout body) ≫
[

[x ≫ x : τ] . . . [f ≫ f : (Π [x : τ] . . . τout)] ⊢ body ≫ body ⇐ τout

]

------------

[≻ (define f (λ (x . . .) body))])

Function f may call itself in its body because (1) f is added to the type environment, and (2) define
in the target language allows recursive definitions. This falls short for Cur, however, for several
reasons. First, it allows defining non-terminating functions like (define loop [n : Nat] : Nat (loop

n)). Second, our reduction rules fire too eagerly so that even supposedly terminating functions will
not terminate. For example, imagine the following Nat function:

(definebad f [n : Nat] : Nat (match n [Z Z] [(S m) (f m)]))

; (f m) => (match m [Z Z] [(S m2) (f m2)])

; => (match m [Z Z] [(S m2) (match m2 [Z Z] [(S m3) (f m3)])]) => ...

This function seems to terminate because f is only called recursively with a smaller argument. If
f is sugar for a λ, however, the application (f m) in the body can always reduce with β and this
will produce infinite applications of f. Instead, recursive functions should not reduce until they are
applied to concrete constructors, i.e., each pattern case should be a new reduction definition.

Figure 25 presents def/rec/match, which defines top-level pattern-matching recursive functions.
It is simplified to one argument x, and non-dependent, non-nested patterns, and we do not show
features like inaccessible patterns, in order to focus on the termination checking (we plan to
eventually support Agda-style matching, e.g., [Cockx et al. 2014; Coquand 1992]). The first #:with
computes binders and their types from each pattern with a generic method pat->ctxt. The second
creates the expected type of each case body by replacing x in τ2 with the case pattern.

The third and fourth #:with tag marks some of the types with extra syntax properties, enabling
termination checking. Specifically, the function’s argument type τ is marked as a łrec argž while
the types returned by pat->ctxt are marked łrec okž because they are łsmallerž arguments. The
last premise type checks the bodies of each case in a type context with: (1) the original input x,
(2) binders xpat from the patterns, and (3) the function f itself. Note this f’s input type is now
τrec; similarly the type of xpat is the łmarkedž τrecok. But the original argument x has unmarked
type τ. A #:where directive following the premise explains how these extra syntax properties are
used. Specifically, the (overloadable) type equality function τ= is changed for just the duration of
checking the bodies, in the following way. Two types are equal if they were equal with the old τ=.
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(def (mk-recarg τ) (attach τ ’rec-arg true)) (def (mk-ok τ) (attach τ ’rec-ok true)) Cur

(define-tyrule (def/rec/match f [x : τ] : τ2 [pat bod] . . .)

#:with (([xpat τpat] . . .) . . .) ((pat->ctxt pat τ) . . .) #:with (τout. . .) ((subst pat x τ2) ...)

#:with τrec (mk-recarg τ) #:with ((τrecok . . .) . . .) (((mk-ok τpat) . . .) . . .)

[ [x ≫ x : τ] [xpat ≫ xpat : τrecok] . . . [f ≫ f : (Π [x : τrec] τ2)] ⊢ [bod ≫ bod ⇐ τout] . . .

#:where τ = (λ (τ1 τ2) (and ( τ =OLD τ1 τ2)

(or (not (rec-arg? τ2)) (rec-ok? τ1) (err "nonterminate"))))]

-------------

[≻ ⌜(define-tyrule (f e) ≫ ⌝
[

⊢ e ≫ e ⇐ τ
]

---------------

[⊢ (f-eval e) ⇒ τ2])

⌞(define-red f-eval [(f pat) ~> bod] . . .)⌟])

Fig. 25. A new recursive definition form for Cur, with termination checking.

Additionally, if the second type is a łrec argž, then the first type must be łrec okž, otherwise we
raise a type error. In this way, only terminating recursive function definitions are allowed. Note
that in a body, attempting to apply f to its original input x would fail because x is not marked
łrec okž. A def/rec/match use emits two definitions, a define-tyrule defining f and a define-red

specifying how to reduce applications of f. Specifically, an applied f is only reduced if its argument
is a concrete value that matches one of the input patterns from its definition. In this way, recursive
functions avoid the non-terminating reductions described earlier.

5.4 Sized Types: Implementing Auxiliary Type Systems

Section 5.3’s termination check roughly corresponds to Giménez [1995]’s syntactic guards in many
proof assistants. This conservative analysis, however, rejects some valid programs, e.g., division via
subtraction, because łnon-increasingnessž of arguments does not propgate through function calls:

(def/rec/match minus [n : Nat] [m : Nat] : Nat

[Z _ => n] [_ Z => n]

[(S n-1) (S m-1) => (minus n-1 m-1)])

(def/rec/match divrejected [n : Nat] [m : Nat] : Nat

[Z _ => n]

[(S n-1) m => (S (divrejected (minus n-1 m) m))]) ; syntactic termination check rejects recursive call

An alternative is sized types [Hughes et al. 1996], a more expressive termination analysis, but adding
them is tricky due to its invasive nature on both a language’s implementation and its usability.
Concretely, they typically require threading an extra size argument into every type and term (see
[Abel 2012]’s work, which inspired our ideas, for details) cluttering code and complicating operations
like type equality. This section shows an experimental sized types library that potentially reaps the
benefits while minimizing the negatives. More specifically, with macros and syntax properties, we
can add łauxiliaryž type systems, like sized types, that operate in parallel to the main one. The extra
types are used when needed, e.g., checking termination, and ignored when not, e.g., type equality.
Figure 26 shows the essence of our library. łSizedž types are plain types annotated with a łszž

property, where the size property can be either an arbitrary identifier i, or (< sz) where sz is
another size property. With the extensibility afforded by macros, we only need to overload a
few features. Specifically, the library consists of two main forms: lift-datatype, which lifts an
existing datatype definition to be sized, and def/rec/matchsz, which reimplements def/rec/match
from Figure 25 except with sized types for termination analysis. Here is the previous div example:
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(define inc-sz [(< i) i] [else (fresh)]) (define (dec-sz sz) (< sz)) Cur/sizedtypes

(define (get-sz τ) (or (detach τ ’sz) INF)) (define (add-sz τ sz) (attach τ ’sz sz))

(define-tyrule (lift-datatype TY)

#:with df (get-datatype-def TY) #:with (C . . .) (get-datacons df) #:with (τC . . .) (get-τC df)

[≻ ⌜(define-tyrule (Csz arg) ≫ ⌝

#:with sz (inc-sz (get-sz arg))

--------------

[⊢ (C arg) ⇒ (add-sz τC sz)]) . . .

(define-instance Csz (pat->ctxt pat ty)

#:with ([x τ] . . .) (pat->ctx (subst C Csz pat) ty)

⌞ ([x (dec-sz τ)] . . .)) . . . ⌟])

(define-tyrule (def/rec/matchsz f [x : τ #:sz i] : τout #:sz j [pat bod] . . .)

#:with τi (add-sz τ i) #:with τout/j (add-sz τout j)

#:with (([xpat τpat] . . .) . . .) ((pat->ctxt pat τi) . . .) ; τpat . . . has size (< i)

#:with τ<i (add-sz τ (< i)) #:with τout/<j (add-sz τout (< j))

[ [x ≫ x : τi] [xpat ≫ xpat : τpat] . . . [f ≫ f : (Π [x : τ<i] τout/<j)] ⊢ [bod ≫ bod ⇐ τout/j] . . .

#:where τ = (λ (τ1 τ2) (and ( τ =OLD τ1 τ2) (sz-ok? (get-sz τ1) (get-sz τ2)))) ]

-------------

[≻ ⌜(define-tyrule (f e) ≫ ⌝
[

⊢ e ≫ e ⇐ τ
]

#:with i (get-sz e)

---------------

[⊢ (f-eval e) ⇒ (add-sz τout j)])

⌞(define-red f-eval [(f pat) ~> bod] . . .)⌟])

(define (sz-ok? sz1 sz2) ; true when sz1 <= sz2

(or (INF? sz2) (syntax-parse (sz1 sz2)

[(x y) (and (id? x) (id? y) (id=? x y))] [((< x) (< y)) (sz-ok? x y)]

[((< x) y) (sz-ok? x y)] [else (err "non-terminating!")] )))

Fig. 26. A library for Cur that adds sized types.

#lang Cur (require cur/sizedtypes) (lift-datatype Nat)

(def/rec/matchsz minussz [n : Nat #:sz i] [m : Nat] : Nat #:sz i ; minussz is non-increasing in size

[Zsz _ => n] [_ Zsz => n]

[(Ssz n-1) (Ssz m-1) => (minussz n-1 m-1)])

(def/rec/matchsz divsz [n : Nat #:sz i] [m : Nat] : Nat #:sz i

[Zsz _ => n]

[(Ssz n-1) m => (Ssz (divsz (minussz n-1 m) m))]) ; sized type termination accepts

lift-datatype takes a type TY, previously defined with define-datatype, and defines sized wrappers
Csz for each unsized constructor C. To simplify understanding, we show each C with only one
argument; an actual implementation would have to choose the łdecreasingž argument. Each Csz

constructor adds a size to the type of an applied C term that is the size of its argument łincrementedž,
where incrementing a size either removes a < or generates a fresh id. Dually, lift-datatype overloads
the generic pat->ctxt for Csz so that the pattern binders have type that is łdecrementedž. This new
pat->ctxt is used by the new def/rec/matchsz.
Except for the different termination analysis, the new def/rec/matchsz is roughly the same as

its predecessor. To implement termination via sized types, the new definition form requires size
annotations on its types, which are then used while type checking the body of each case. Observe
that when type checking the bodies, the type for f in the type environment requires an argument
that is sized less than the original argument size i. This smaller argument will typically come from
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#lang cur (require cur/olly) olly-prog

(define-language stlc #:vars (x)

#:coq-out "stlc.v" #:latex-out "stlc.tex"

val (v) ::= true false unit

type (A B) ::= boolty unitty (-> A B) (* A A)

trm (e) ::= x v (lm (#:bind x : A) e) (ap e e)

(cons e e) (let (#:bind x #:bind x) = e in e))

(define-datatype stlc-trm : Type

(Var->stlc-trm Var : stlc-trm)

(stlc-val->stlc-trm stlc-value : stlc-trm)

(stlc-lm Var stlc-type stlc-trm : stlc-trm)

(stlc-ap stlc-trm stlc-trm : stlc-trm)

(stlc-cons stlc-trm stlc-trm : stlc-trm)

(stlc-let Var Var stlc-trm stlc-trm : stlc-trm))

Fig. 27. (l) STLC with Olly, a Cur notation extension; (r) Olly-generated Cur datatype

the result of the new pat->ctxt (generated by lift-datatype). Like previous def/rec/match, τ =

is overloaded, this time to ensure that sized types satisfy a sz-ok? predicate, which enforces that its
first argument has size less than or equal to its second. The sz-ok? function special-cases an INF

size, which is assigned to unlifted types, for when we do not care about sizes. Most importantly, the
size annotation on the output, which may reference sizes of the input arguments, allows declaring
that functions like minus have non-increasing size. This allows size information to propagate across
function calls to enable div, and even higher-order cases like łrose treesž (see [Abel 2010]).

6 COMPANION DSLS FOR A PROOF ASSISTANT

Even with Section 5’s extensions, it is still tedious to program and prove with Cur. To make proving
practical, proof assistants typically layer companion DSLs on top of their core. By building with
macros from the beginning, we already have a framework in which both language implementers and
users can easily build such DSLs. They may even build metaDSLs to build their DSLs, as advocated
by language-oriented programming. Best of all, any new DSLs are linguistically integrated with
Cur, instead of operating as third-party preprocessors. This section presents three DSLs: Olly, for
modeling programming languages; ntac, a tactic language for scripting proofs; and metantac, a
metaDSL used to implement ntac. All these DSLs elaborate to core Cur before type checking; thus
we can extend the functionality of our language yet keep the trusted base small.
Olly is an Ott-inspired [Sewell et al. 2007] DSL for modeling programming languages in Cur.
Specifically, programmers write BNF or inference rule notation to specify language syntax and rela-
tions, respectively, and Olly generates the Cur inductive type definitions; LATEX or Coq extraction
is also supported. Figure 27 (l) shows the STLC in BNF using Olly. Optional #:bind annotations
specify binding positions in the grammar; here cons creates pairs and let eliminates them, thus
the latter binds two names. Olly generates an inductive datatype for each non-terminal in the
grammar; Figure 27 (r) shows trm, whose constructor names are derived from the specification.
Extra constructors, e.g., Var->stlc-trm, allow converting from the other non-terminals. Internally,
define-language uses an intermediate data structure, which is converted to Cur, Coq, LATEX, and
other outputs. Unlike Ott and other external tools, Olly is a user-written library and is supported
linguistically; thus programmers may use Olly forms alongside normal Cur code rather than
switch to external tools, demonstrating how our macros-based approach supports tailoring all
aspects of a proof assistant to specific domain, from the object theory to the syntax.
Tactic systems are a popular tool to enable interactive, command-based construction of proof
terms in proof assistants and our macro-based approach naturally provides all the capabilities
required to build one: pre-type-checking general purpose computation, traversal and pattern
matching of language terms, interesting elaboration system data structures for manipulating proof
states, an API to the object language to type check and evaluate terms while constructing proofs,
interactivity, and syntactic integration into the language. Even better, we may abstract over these
low-level features with a meta DSL, to implement the tactics concisely and intuitively.
We present ntac, a tactic language for Cur. It tracks intermediate hole-embedded proof terms,

and subgoals and contexts corresponding to those holes, as a tree. Further, a zipper navigates and
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#lang metantac ; define-tactic usage pattern

(define-tactic tactic-name

[<usage pat> #:current-goal <goal pat>

; . . .

; implicit bindings: $ctx, $ptz, $pt, $goal

; . . .

(֒→ <new partial term with ?HOLEs>

#:where

[x : τ . . . ⊢ ?HOLE1 : <subgoal1>] . . .)]

. . .)

#lang metantac ntac

(define-tactic intro

[(_ y) #:current-goal (Π (x : P) τ)

(֒→ (λ (y : P) ?H)

#:where y : P ⊢ ?H : (subst y x τ))]

[_ #:current-goal (Π (x : P) τ)

(֒→ (λ (x : P) ?H) #:where x : P ⊢ ?H : τ)])

(define-tactic assumption

[_ (֒→ (ctx-find $ctx (λ t (τ= t $goal))

#:fail "no assumption $goal"))])

(define-tactic (inversion H #:with-names H0 ...) #:with τH (typeof H) ntac

#:with ((A . . .) (i . . .) [C x . . . xrec . . . : τC] ...) (get-datatype-def τH)

(֒→ (elim H (λ i . . . H $goal) (λ x . . . xrec . . . $pf) . . .) #:with-subgoals

((stx-parse (unify+prove (get-indxs τH) (get-indxs τC))

[([=pf : =thm] . . .) (֒→ ((λ [H0 : =thm] . . . ?HO) =pf . . .) #:where [H0 : =thm] . . . ⊢ ?HO : $goal)]

[pf-of-False ; unify fail (֒→ (elimFalse pf-of-False (λ _ $goal)))]) . . .)

Fig. 28. (l) define-tactic usage; (r) implementation of intro and assumption; (bot) inversion tactic

focuses on subgoals in this proof tree. Concretely, an ntac tactic is a macro that when invoked,
produces a function that transforms zipper data structure instances. Here is a trivial ntac proof:

#lang cur (require cur/ntac) example-theorem

(define id (ntac (∀ (A : Type) (a : A) A) (intros A a) assumption))

The first argument to ntac is a goal theorem; the rest are tactic invocations, i.e., a script that builds
the proof term. When invoked, ntac builds a tree node with the given goal and a hole term, and
creates a zipper with that initial node as the focus. Each subsequent tactic invocation transforms
the zipper and proof tree with nodes that gradually fill the hole(s). After the script completes, the
holeless tree is converted to a complete proof term, which is the result of the ntac call. Thus, an
ntac invocation may be used in any expression position, e.g., bound to the name id using define.

A Cur tactic manipulates the proof zipper but a tactic programmer should not have to explicitly
manage this proof state. Figure 28 (l) shows define-tactic, from a metantac language for writing
tactics, which abstracts over low-level details. Specifically, a define-tactic definition consists of a
series of cases, each starting with a pattern dictating usage syntax of the tactic, and an optional
pattern matching the current goal. The body of each case must return a term, possibly with holes,
whose type matches the current goal. Programmers use ֒→ to construct this partial term, where
optional #:where declarations, of shape [x : τ] . . . ⊢ ?HOLE : <subgoal>, specify new subgoals to
prove, each corresponding to a ?HOLE name referenced in the first argument of ֒→. They may also
use implicitly bound variables if they wish to directly access parts of the proof state, e.g., $goal,
$ctx, $pt, $ptz, for the goal, context, proof tree, and zipper instance, respectively.
Figure 28 (r) shows the implementation of the two tactics used in the id theorem above. The

intro tactic (only single-variable cases are shown) has two cases; the first is invoked when given
an identifier y, when the goal has shape (Π [x : P] τ). It fills the current hole with a λ binding [y

: P], which has a new hole ?H in its body. It then specifies that a new subgoal for ?H, in context
where y has type P, is τ except with x replaced by the argument y. The second intro case has no
argument; instead, it directly uses x from the goal. The assumption tactic also has no argument; it
searches the current context, bound to $ctx, for a variable with type matching the current goal. If
it’s successful, it fills the current hole with the variable; otherwise it raises an error. No #:where

argument for ֒→ is necessary here because the resulting proof term has no holes.
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metantac also supports writing tactics that may generate an unknown number of subgoals;
e.g., Figure 28 (bot) sketches inversion, which for an existing theorem H, generates equalities that
must also be true based on the injectivity of constructors. For example, inverting (= (S x) (S

y)) produces (= x y). The inversion tactic uses unify+prove, which performs specialization by
unification [Goguen et al. 2006], computing either a series of equalities and their proofs, or a proof
of False. If the former, the current proof state is extended with the new equalities; if the latter, the
current goal is immediately proved. Specifically, inversion unifies the indices of τH, H’s type, with
the indices of the result of each constructor C of τH, creating a proof subnode for each C. The result
of inversion is an elim term for H, where the bodies of the methods are the results of the given
subgoals, referenced with an implicit $pf variable.

By implementing tactics as functions, tacticals, i.e., tactic combinators, are straightforward. For
example, here is try, which takes a sequence of tactics but backtracks if any of them fail:

(define-tactical try ntac

[(_ t . . .) (with-err-handler (λ (e) $ptz) ((compose (reverse (list t . . .))) $ptz))])

It reverses its given tactics and applies themwithwith compose, which applies its rightmost argument
first. If any of the tactics errors, then try reverts to the original proof state $ptz.
Macros also enable more flexible control of the surface syntax, even allowing hybrid tactic-

tacticals. For example, here is a skeleton of an induction tactic with two cases:

(define-tactic induction ntac

[(_ H #:as ((x . . .) . . .)) ; . . .]

[(_ H [(C x ...) #:subgoal-is subg tactic . . .] . . .) ; . . .])

The first is similar to systems like Coq, where the user supplies identifiers that will bind the data
constructor arguments in each case. Programmers, however, can find it hard to read this kind of
command. The second case enables a slightly more łdeclarativež usage: each data constructor case
is named, and thus may appear in arbitrary order; the subgoals are explicit and checked, making the
script easier to follow; and the tactics for each case are grouped, giving the proof more structure.
We can even equip user-defined tactics with features like interactivity:

(define-tactic interactive

[_ (print $pt)

(match (read-syntax)

[(quit) $ptz]

[a-tactic (interactive (a-tactic $ptz))])])

(ntac (∀ (A : Type) (a : A) A) interactive)

goal 1 of 1: (∀ (A : Type) (a : A) A)

> (by-intros A a)

ctx: A : Type a : A (step #1)

---------------

curr goal: A

> by-assumption

Proof complete (2 steps)

> (quit) ; script: (intro A a) assumption

Specifically, the interactive tactic uses print to display the proof state, then starts a read-eval-
print-loop (REPL). The right side shows an example interactive session. The REPL repeatedly reads
in a command and runs it; when it sees quit, it prints the complete proof script and evaluates to the
resulting proof term. We conjecture we could also embed ntac with IDEs like emacs or DrRacket,
perhaps using the techniques of Korkut and Christiansen [2018], for even better interactivity.
Programming with Cur and ntac To demonstrate that one may usefully program with the
languages we create, we implemented a large test suite. In particular, we spent one year using Cur

and ntac to study the Software Foundations curriculum (vol 1). Since it targets novices, its examples
cover a wide breadth of features and is thus a convenient way to stress-test the flexibility of our
macros-based approach to implementing dependent types. This table summarizes our test suite:
Olly 59 dep-lang 272 dep-ind-lang 2914 typed/video 721
ntac (sf vol 1) 8045 sized types 239 axioms 98
sugar 58 patterns and def 122 solver 202 total: ~13.3k LoC
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7 RELATED WORK

There are many tutorials on implementing dependent types [Altenkirch et al. 2010; Augustsson
2007; Bauer 2012; Löh et al. 2010; Weirich 2014]. They typically start from scratch, however, e.g.,
they manually manage type environments and rely on deBruijn indices to compute α-equality.
They also often do not include practical features such as user-defined inductive datatypes, nor are
they easily extensible with sugar, interactivity, or companion DSLs that programmers typically
need to use with their dependently typed language. In contrast, our macros-based approach enables
rapid creation of a core dependently typed language, and scales to a full proof assistant.
Extending proof assistants, particularly viametaprogramming, is an active area of research [Chris-
tiansen and Brady 2016; Devriese and Piessens 2013; Ebner et al. 2017]. For some languages, however,
this requires extending the core [Brady and Hammond 2006]. Other languages like Coq require
writing extensions in a less integrated manner, e.g., programming plugins with OCaml and then
linking it with other language binaries. We present an alternative, linguistically integrated approach
to extensibility, using the macro system inherited from the host language.
New tactic languages continue to make proof assistants easier to use [Gonthier and Mahboubi
2010; Gonthier et al. 2011; Krebbers et al. 2017; Malecha and Bengtson 2016]. This suggests that (1)
the ability to create a variety of tactic languages is critical, and (2) that linguistic support for creation
of such DSLs would be well received. While we have yet to conduct a thorough comparison of all
tactic languages and their implementations, we conjecture that our macros-based approach could
accommodate many of them in a convenient manner. For example, there has been recent exploration
of typed tactic languages Beluga [Pientka 2008], Mtac [Ziliani et al. 2013], and VeriML [Stampoulis
and Shao 2010]. We conjecture that it would be straightforward to add a typed tactic language to
Cur using our macros-based approach. This could be done either by utilizing Turnstile+, or using
Cur’s reflection API to use Cur as it’s own meta-language, following work in Lean [Ebner et al.
2017], Idris [Christiansen and Brady 2016], Agda [Norell 2007], or Coq [Anand et al. 2018].

8 FUTURE WORK

In addition to exploring typed tactics and extensions like automation, we will also continue adding
features and improving various aspects of our framework. For example, if define-red considered
type information in addition to a redex pattern, it would enable implementing type-directed
equality rules like η. Another potential improvement involves preventing abstraction leaks due
to the interleaving of checking and expansion. For example, Cur and ntac must resugar during
interactive proofs to avoid exposing users to elaborated syntax. The current approach is ad-hoc,
however, recent advances [Pombrio and Krishnamurthi 2015] could help. Another solution could
be to implement a domain-specific core target language, thus avoiding resugaring altogether. Such a
feature would also improve the performance of type checking by culling extraneous expansion
steps. We are exploring such enhancements, which possibly include changes to the macro expander
itself, in order to further advance type checking with macros.

9 CONCLUSION

To fully realize the benefits of dependent types, programmers should be able to quickly develop
dependently typed DSLs with the right power for a domain, and rapidly iterate on new dependently
typed language features. Further, such languages should be easily extensible with new notation
or companion DSLs that may be required for practical use cases. We have demonstrated that a
macros-based approach to building dependently typed languages and features satisfies this criteria.
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